Abrahamse’s Interpolation Theorem and Fuchsian Groups

نویسنده

  • MRINAL RAGHUPATHI
چکیده

We generalize Abrahamse’s interpolation theorem from the setting of a multiply connected domain to that of a more general Riemann surface. Our main result provides the scalar-valued interpolation theorem for the fixedpoint subalgebra of H∞ associated to the action of a Fuchsian group. We rely on two results from a paper of Forelli. This allows us to prove the interpolation result using duality techniques that parallel Sarason’s approach to the interpolation problem for H∞. In this process we prove a more general distance formula, very much like Nehari’s theorem, and obtain relations between the kernel function for the character automorphic Hardy spaces and the Szegö kernel for the disk. Finally, we examine our interpolation results in the context of the two simplest examples of Fuchsian groups acting on the disk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poincaré’s Theorem for Fuchsian Groups

We present a proof of Poincaré’s Theorem on the existence of a Fuchsian group for any signature (g; m1, ..., mr), where g, m1, ..., mr provide an admissable solution to the formula describing the hyperbolic area of the group’s quotient space. Along the way we elucidate relevant concepts in hyperbolic geometry and the theory of Fuchsian groups.

متن کامل

Galois theory of fuchsian q-difference equations

We propose an analytical approach to the Galois theory of singular regular linear q-difference systems. We use Tannaka duality along with Birkhoff’s classification scheme with the connection matrix to define and describe their Galois groups. Then we describe fundamental subgroups that give rise to a Riemann-Hilbert correspondence and to a density theorem of Schlesinger’s type.

متن کامل

Alternating Quotients of Fuchsian Groups

It all started with a theorem of Miller [14]: the classical modular group PSL2Z‘ has among its homomorphic images every alternating group, except A6; A7; and A8. In the late 1960s Graham Higman conjectured that any (finitely generated non-elementary) Fuchsian group has among its homomorphic images all but finitely many of the alternating groups. This reduces to an investigation of the cocompac...

متن کامل

Commensurability of Fuchsian Groups and Their Axes

Theorem. For each arithmetic Fuchsian group Γ, there exists an infinite order elliptic element e such that e(ax(Γ)) = ax(Γ). Recall that a Fuchsian group is a discrete subgroup of PSL2(R) ∼= isom(H). We denote by ax(Γ) the set of axes of hyperbolic elements of the Fuchsian group Γ. The proof follows easily from known properties of arithmetic Fuchsian groups. Recall that an arithmetic Fuchsian g...

متن کامل

Random Walks on Co-compact Fuchsian Groups

It is proved that the Green’s function of a symmetric finite range randomwalk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence R. It is also shown that Ancona’s inequalities extend to R, and therefore that the Martin boundary for R−potentials coincides with the natural geometric boundary S, and that the Martin kernel is uniformly Hölder continuous. Fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008